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ABSTRACT In our daily life, electric furnaces are frequently used both in our homes and in 

industry. In electric furnaces, resistance heaters are placed on the upper and lower sides and 

temperature control is realized by on-off control method. Nevertheless, this method is unstable for 

applications where highly sensitive thermal control is required. Proportional-Integral-Derivative 

(PID) control stands out in precision heat treatment with its simplicity and stability. In this study, 

On-Off, Proportional, Proportional-Integral, and PID control methods were applied to the electric 

furnace at a reference temperature of 125 °C. The system model and parameters were determined 

by using the Ziegler-Nichols method. Also, by using the zero-crossing detection technique, the 

trigger signal and the network frequency were synchronized and the possible noise in the system 

was minimized. From the test results obtained; the stability and superiority of these control 

methods were compared. There is permanent error in P control. Thanks to the I component, 

permanent error in PI and PID control is eliminated. In addition, the best system response was 

achieved with PID control. 
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1. INTRODUCTION 

Electric furnaces are widely used in industry and at 

homes for different purposes. Generally, heating in 

electric furnaces is carried out with the help of resistors 

placed on the upper and lower surfaces of furnace. The 

on-off control is the most basic control technique. 

However due to the unstable operation of this control 

method, deviations occur on the desired reference value 

in heat treatments. PID control method is used frequently 

in electrical furnaces which require very sensitive heat 

treatments [1]. In a study [2], the temperature control of 

an electric furnace by the PID method was performed 

using a microcontroller. To improve the performance of 

the PID controller, artificial neural networks or fuzzy 

logic can be used together [3–6]. Besides, the selection 

of PID parameters has a significant effect on control 

performance as presented in [7, 8]. Although there are 

many studies about oven temperature control in 

literature, most of these are simulation-based [9–23]. 

Only a few studies have provided experimental results 

[24–25]. However, the electronic components of the 

system and their structures are not given in detail in these 

articles. Also, synchronized switching was not exploited 

in these studies to prevent noise on the network. In this 

study, the suggested system model and PID parameters 

were obtained by using the Ziegler-Nichols method. 

Then On-Off, Proportional (P), Proportional-Integral 

(PI), PID control methods were applied to the electric 

furnace at 125 °C reference temperature. The stability of 

these control techniques was compared. Moreover, the 

trigger signal, and the network frequency were 

synchronized and the possible noise in the system was 

minimized by using the zero-crossing detection method.  

 

2. EXPERIMENTAL 

The block diagram of the real-time temperature control 

system is shown in Figure 1. The resistors and sensors are 

positioned on the upper and lower surfaces of the electric 

furnace. With the help of the programmed microcontroller, 

trigger signals were sent to these resistances to heat the furnace. 

Four intuitive control techniques were performed with the help 

of return signals from the sensors. Also, the system was 

eliminated from disturbing effects by synchronizing the 

network frequency with the trigger signals utilizing the zero-

pass detection circuit. 
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2.1. Zero-Pass Detection Circuit 

The electric furnace is heated by two 1500 W 

resistors, one at the base and the other at the ceiling. The 

resistances are independently controlled by the trigger 

signals generated by the microcontroller board at 10 ms 

increments over 100 ms period. The synchronization 

between the trigger signal and the network frequency is 

ensured by the zero-pass detection circuit. The schematic 

diagram of the zero-crossing circuit is shown in Figure 2 

and the printing circuit is shown in Figure 3. The mains 

voltage is detected by the H11L1 zero crossing detecting 

circuit circuit. Supply voltage for H11L1 integrated is 

provided by 12V DC 2 W transformer, 1.5 a bridge diode, 

LM7805 linear voltage regulator and peripherals [26]. 

Mains voltage is reduced to 12 VAC by a second 

transformer and then applied to the integrated circuit via 

1 kΩ resistor. The integrated circuit produces a pulse of 

5 V amplitude and 500 µs width for every zero crossings.  

 
Fig. 1. Block diagram of the system 

 

 
Fig. 2. Schematic diagram of the zero-crossing detection 

circuit 

 

 
Fig. 3.  zero-pass detection circuit established in current 

study 

 

2.2. Heater Driver Circuit 

It adjusts the instantaneous power of the resistors 

used in heating of the furnace in 101 steps according to 

triggering signal. The schematic diagram of the driver 

circuit is shown in Figure 4 and the printed circuit is 

shown in Figure 5. 

 
Fig. 4. Schematic diagram of the heater driver circuit 

 

 
Fig. 5. Heater driver developed in current work 

 

Figure 6 shows the change of voltage at the mains and 

resistance terminals over time while Figure 7 shows the 

change in voltage at the load terminals according to the 

trigger signal. Mains voltage (𝑉𝑠) is applied to the resistor 

after it is rectified with a 35 A 1000 V bridge diode with 

1.1 V threshold voltage (𝑉𝛾). The output of the resistor is 

connected to the BTA41 triac of 41 A 600 V with 10 mΩ 

dynamic resistance (𝑅𝑑) [27]. The trigger signal from the 

controller board is applied to the BTA41 via the 

MOC3010 optically isolated triac driver. When the triac 

conducts, the resistance voltage (𝑉𝑟) given in Figure 6 is 

obtained. The voltage 𝑉𝑟(𝑡) is defined by Equation (1) for  

𝑉𝑠(𝑡) > 2𝑉𝛾  and calculated by 𝑉𝑟(5 𝑚𝑠) = 𝑉𝑟𝑚𝑎𝑥
=

305.8. 
 

 𝑉𝑟(𝑡) = (𝑉𝑠𝑚𝑎𝑥
|𝑠𝑖𝑛100𝜋𝑡| − 2𝑉𝛾)(1 − 𝑅𝑑) (1) 

 
Here |.| absolute value operation. In Figure 7, the 

voltage at the resistance terminals is given for the 80% 

fill rate. In Figure 7, the rectified mains voltage, shows 

the output of the zero-pass detection circuit, the trigger 

signal generated by the microcontroller and the voltage 

at the heater terminals.  

 
Fig. 6. Variation of voltage at mains and resistance 

terminals over time 
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Fig. 7. Variation of voltage at load terminals according 

to the trigger signal over time 

 

2.3. Modeling of Electric Furnace 

Ziegler-Nichols' step response method was used to 

model the electric furnace. In this method, the step 

function is applied to the system input, and a curve shown 

in Figure 8 is obtained. Figure 8 shows the values of the 

dead time point (L), the distance between the tangent 

point, the dead time (T) and the system output value (K). 

 
Fig. 8. Ziegler-Nichols step response graph 

 

The output graph obtained by applying a unit step 

trigger signal to the input of the electric furnace as shown 

in Figure 9. 

 
Fig. 9. The output graph obtained by applying a unit 

step function to the input of the electric furnace 
 

From the graph in Figure 9, one can obtain K = 153.5, 

T = 789, and L = 64. Using these values, the system 

model is determined. Equation (2) is used to model the 

system with the Ziegler-Nichols step response method. 

 

𝐺(𝑠) =
𝐾∗𝑒−𝐿𝑠

𝑇𝑠+1
     (2) 

If K = 153.5, T = 789, and L = 64 are replaced in (2), 

the system model G(s) is obtained as shown in Equation 

(3). 

𝐺(𝑠) =
153,3∗𝑒−64𝑠

789𝑠+1
  (3) 

 
2.4 Determination of PID Parameters 

Open-loop Ziegler-Nichols tangent model was used 

to obtain the system parameters. Table 1 shows the values 

of K = 153.5, T = 789 and L = 64 obtained from Figure 9. 

 
Table 1. Open loop Ziegler-Nichols tangent model 

parameters formula 

Control Method KP KI KD 

Proportional T/L - - 

Proportional-Integral 0.9×T/L 0.3/L - 

Proportional-Integral-

Derivative 
1.2×T/L 1/2×L 0.5×L 

 

The values of K, L, T replaced in Table 1 and the 

calculated system parameters are given in Table 2. 

 

Table 2. The obtained system parameters 

Control Method KP KI KD 

Proportional 12.320 - - 

Proportional-Integral 11.088 0.0047 - 

Proportional-Integral-

Derivative 
14.780 0.0079 35 

 
When determining system parameters, it is necessary 

to consider the measurement errors of sensors providing 

data and measurement devices that we measure and the 

disturbing errors that affect our system from the outside. 

System parameters have been calibrated based on the 

results obtained above. Thus, the most appropriate 

system parameters for the developed system was 

obtained. Table 3 shows the calibrated system 

parameters. Here Kp is the proportional gain factor, Ki is 

the integral gain coefficient, and Kd is the differential 

gain constant. 

 

Table 3. The calibrated system parameters 

Control Method KP KI KD 

Proportional 10 - - 

Proportional-Integral 8 0.002 - 

Proportional-Integral-

Derivative 
10 0.002 35 

 
3. RESULTS 

In this study, temperature control was performed by 

using On-Off, P, PI, and PID controllers at 125 °C 

reference temperature of an electric furnace. Figure 10 

shows the real-time change of temperature signal for four 

different control techniques and the control signals are 

given in Figure 11. Figure 11 shows that the On-Off 

control is not steady state and the panel temperature 

oscillates around the reference value. There is also a 

offset error in P control. On the other hand, offset error 

disappeared in PI and PID. Finally, the best system 

response was achieved with PID. 
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Fig. 10. The real-time change of the panel temperature  

 

 
Fig. 11. The change of the control signals with time 

 
The performance values for the lower panel and the 

top panel of four different control methods are given in 

Table 4, and Table 5, respectively. Here the time-

weighted sum of the absolute value of the error (ITAE) is 

chosen as the objective function. Obtained results were 

found to be compared to the results given at [24]. 

 

Table 4. Bottom panel measurement results 

Performance 

Criteria 
On-Off P PI PID 

Max. Value 

(°C) 
136.60 121.74 127.50 126.63 

Overlap  

(%) 
    9.28 - 2.00 1.31 

Settling Time (s) - 1,095 1,127 1,104 

Rise Time (s) 464 574 627 640 

Offset Error  

(° C) 
- 5.7 0.3 0,2 

ITAE 7.4e+06 9.1e+06 6.5e+06 6.2e+06 

 

Table 5. Top panel measurement results 

Performance 

Criteria 
On-Off P PI PID 

Max. Value 

(°C) 
130.03 120.16 126.22 126.18 

Overlap  

(%) 
4.03 - 0.98 0.94 

Settling Time 

(s) 
- 1,109 1,144 1,040 

Rise Time 

(s) 
555 556 585 601 

Offset Error 

(°C) 
- 4.9 0.4 0.3 

ITAE 6.6e+06 8.6e+06 5.6e+06 5.4e+06 

4. CONCLUSION 

In this study, the temperature control of an electric 

furnace was carried out in real-time by using four 

different control methods. 125 °C was selected as the 

reference temperature. Using the open-loop Ziegler-

Nichols tangent technique, the control parameters were 

obtained. Real-time graphs of the temperature and 

control signals are also provided in Figure 10 and Figure 

11, respectively. The following conclusions can be drawn 

from these results and graphs; 

It was observed that the temperature oscillated above 

the determined reference value and did not reach the 

reference temperature, although it reached the best rise 

time in on-off control. In the P control method, it was 

observed that the oscillation of the temperature signal 

was prevented. However, the steady-state error was 

found to be very high. PI control technique showed that 

the oscillation of the temperature signal was eliminated, 

and the steady-state error was minimized. PID control 

method was reduced much more the offset error and it 

was found to provide faster settling time compared to the 

PI control technique. The results obtained are similar to 

[24] and according to the ITAE criteria, the best control 

method for both the top and bottom panels of the electric 

furnace was found to be PID control. 
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