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1. INTRODUCTION 

Wave diffraction by a half-plane has been an important 

fundamental investigation field for decades. Sommerfeld 

obtained first the solution to this problem in 1896 [1]. An alternate 

way to solve the problem is the multipole expansion method [2]. 

By employing parabolic cylinder functions, Lamb obtained the 

exact solution to the scattering by a perfectly electric conductor 

(PEC) half-sheet [3, 4]. The same approach was also used by 

Friedlander [5] and Chambers [6]. The geometrical theory of 

diffraction (GTD) was introduced by Keller in 1962 [7]. The GTD 

is based on the asymptotic evaluation of the diffracted fields 

originating from an edge at high-frequencies. Jull worked on the 

plane wave diffraction by a PEC half plane in an anisotropic 

plasma [8]. The electromagnetic diffraction phenomenon in an 

anisotropic medium is studied by Williams [9]. Przezdziecki 

worked on the diffraction by a half-plane that is perpendicular to 

the distinguished axis of the uniaxially anisotropic medium [10]. 

Fisanov studied the diffraction of cylindrical waves originating 

from a line source by a half-plane in an anisotropic plasma [11]. 

Kirchhoff employed the integral solution of the Helmholtz 

equation for the waves scattered by opaque aperture and obtained 

Kirchhoff diffraction integral which is used for scattering and 

electromagnetic propagation problems [12].  

Antenna characteristics, frequency bands, and scattering 

characteristics of soft and hard surfaces can be investigated using 

the Kirchhoff diffraction integral. Umul introduced the modified 

diffraction theory of Kirchhoff. In the study, Kirchhoff's 

diffraction theory is reinterpreted, and a new form of diffraction 

integral proposed using the modified theory of physical optics 

(MTPO) is used to solve the diffraction problem of a semi-infinite 

contour [13]. Umul studied a new representation of the Kirchhoff 

diffraction integral in which the integral boundaries are 

rearranged [14]. Kara investigated the scattering phenomenon of 

inhomogeneous plane waves by two half-planes having different 

properties [15]. Umul examined the diffraction of evanescent 

plane waves by a resistive half-plane [16]. Kara investigated the 

scattering of a plane wave incident on a cylindrical parabolic 

reflector with an arbitrary complex angle [17]. Kara worked on 

the diffraction of a plane wave by an aperture between two 

isorefractive media [18]. Stamnes used a hybrid technique by 

combining the asymptotic methods with the numerical integration 

technique [19]. Kara studied the fields of a line source diffracted 

by a cylindrical parabolic Perfectly Electric Conducting (PEC) 

reflector by employing the scattering integral of the modified 

theory of physical optics (MTPO) [20]. Zernov and Darmon 

studied the refinement of the Kirchhoff approximation to the 

scattered elastic fields [21]. Macdonald examined the effect 

caused by an obstacle on electric waves [22]. Ufimtsev studied on 

a new insight into the classical Macdonald physical optics 

approximation [23]. Khizhnyak et al. investigated the structure of 

edge-dislocation waves originating in plane wave diffraction by a 

half plane [24]. Kara examined asymptotic evaluation of 
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scattering of inhomogeneous plane waves by a PEC half plane 

[25]. Kyoung et al. studied on the far field detection of terahertz 

near field enhancement of sub-wavelength slits using Kirchhoff 

integral formalism [26]. 

In this study, by applying the Kirchhoff diffraction integral to 

the problem of soft and hard half-planes, two different diffraction 

integrals will be obtained. The novelty of this study is the 

investigation of the diffracting behaviours of soft and hard 

surfaces by using the Kirchhoff diffraction integral and 

determining the difference between them considering the half-

plane diffraction. In the material and method section, theoretical 

derivations are obtained by employing the Kirchhoff diffraction 

integral. In the numerical results section, diffracted fields 

obtained for the soft and hard surfaces are discussed by 

interpreting their plots. 

2. MATERIAL AND METHOD  

A perfectly electric conductor half plane is considered. It is located 

on y=0 plane, 𝑥 ∈ (0,∞) and 𝑧 ∈ (−∞,∞). The geometry is given in 

Figure 1 where 𝜑0 is the angle of incidence, 𝛼 is the scattering angle 

and P is the observation point located at (x, y, z). Kırchhoff’s diffraction 

integral is written as in Equation (1). 

𝑢(𝑃) = −
1

4𝜋
∬[𝑢𝛻𝐺 − 𝐺𝛻𝑢]. �⃗�  𝑑𝑆′   (1) 

where G is the Green function which is expressed as 𝐺 = 𝑒𝑥𝑝(−𝑗𝑘𝑅) /
𝑅, and u is the total field. �⃗�  is the normal vector to the surface. R is the 

distance between the scattering point 𝑥′ and the observation point. 𝑘 is 

the wave number. A soft (smooth) surface reflects the incident wave in 

only one direction. However a hard (rough) surface scatters the incoming 

wave in more than one direction, but the magnitude of the waves in the 

reflection direction is greater than that of the waves in other directions. It 

is known that the softness or hardness of a surface depends on the 

frequency and the angle of incidence. For a hard surface, the derivative 

of the total field 𝑢 on the surface is zero, while For the soft surface, 𝑢 is 

zero. Letting the incident plane wave 𝑢𝑖 given in Figure 1.  

 
Fig. 1. The geometry of the diffraction. 

𝑢𝑖 = 𝑒�̂�𝑢0𝑒
𝑗𝑘(𝑥𝑐𝑜𝑠𝜑+𝑦𝑠𝑖𝑛𝜑)                                                    (2) 

where 𝑢0 will be taken as unity for simplicity. Kirchhoff’s integral in 

Equation (1) becomes, 

𝑢(𝑃) =
1

4𝜋
∬𝐺 𝛻 𝑢. 𝑛 ⃗⃗  ⃗ 𝑑𝑆′     (3) 

where normal vector �⃗�  is in y-direction and, Kirchhoff diffraction 

integrai is obtained by following the Equations (4) through (8). 

𝛻𝑢. �⃗� = (
𝜕𝑢

𝜕𝑥
𝑒𝑥⃗⃗⃗⃗ +

𝜕𝑢

𝜕𝑦
𝑒𝑦⃗⃗⃗⃗ +

𝜕𝑢

𝜕𝑧
𝑒𝑧⃗⃗  ⃗) . 𝑒𝑦⃗⃗⃗⃗ =

𝜕𝑢

𝜕𝑦
                  (4) 

𝛻𝑢. �⃗� =
𝜕𝑢

𝜕𝑛
=

𝜕𝑢

𝜕𝑦
                                     (5) 

𝑢(𝑃) =
1

4𝜋
∬𝐺

𝜕𝑢

𝜕𝑦
𝑑𝑆 ′                                                                      (6) 

𝑢(𝑃) =
𝑗𝑘

2𝜋
∫ ∫ 𝑠𝑖𝑛𝜑0 𝑒

𝑗𝑘𝑥′𝑐𝑜𝑠𝜑0
∞

𝑧′=−∞

∞

𝑥′=0

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑥′𝑑𝑧′  (7) 

𝑢(𝑃) =
𝑗𝑘𝑠𝑖𝑛𝜑0 

2𝜋
∫ ∫

𝑒𝑗𝑘(𝑥′𝑐𝑜𝑠𝜑0−𝑅)

𝑅

∞

𝑧′=−∞

∞

𝑥′=0
𝑑𝑥′𝑑𝑧′  (8) 

where the phase varies according to 𝑒𝑥𝑝(𝑗𝑘𝑥′𝑐𝑜𝑠𝜑0), and 

𝑒𝑥𝑝(−𝑗𝑘𝑅)/𝑅 means that the wave is spherical. We are dealing with 

the first integral term in Equation (8) which has the form of, 

∫ 𝑓(𝑥)𝑒−𝑗𝑘𝑔(𝑥)∞

𝑎
𝑑𝑥                                                                      (9) 

Which can be rewritten as; 

∫ 𝑓(𝑥)
𝑔′(𝑥)

𝑔′(𝑥)
𝑒−𝑗𝑘𝑔(𝑥)∞

𝑎
𝑑𝑥                                                  (10) 

By letting, 

𝑢 =
𝑓(𝑥)

𝑔′(𝑥)
                                                                                     (11) 

𝑑𝑣 = 𝑔′(𝑥)𝑒−𝑗𝑘𝑔(𝑥)                                                                   (12) 

𝑑𝑢 =
𝑓′(𝑥) 𝑔′(𝑥)−𝑓(𝑥)𝑔′′(𝑥)

[𝑔′(𝑥)]2
                                                  (13) 

𝑣 = −
1

𝑗𝑘
𝑒−𝑗𝑘𝑔(𝑥)                                                                   (14) 

Applying the integration by parts to Equation (10), we write, 

∫ 𝑓(𝑥)𝑒−𝑗𝑘𝑔(𝑥)∞

𝑎
𝑑𝑥 = −

1

𝑗𝑘

𝑓(𝑎)

𝑔′(𝑎)
𝑒−𝑗𝑘𝑔(𝑎) −

𝑗

𝑗𝑘
∫ 𝑒−𝑗𝑘𝑔(𝑥) 𝑓′(𝑥) 𝑔′(𝑥)−𝑓(𝑥) 𝑔′′(𝑥)

[𝑔′(𝑥)]2
∞

𝑎
𝑑𝑥                                 (15) 

Integral on the right side of Equation (15) can be ignored due to the 

𝑘2 term in the denominator that makes the term tend to zero. Therefore, 

the diffraction integral is obtained in Equation (16). 

𝐸𝑑 = ∫ 𝑓(𝑥)𝑒−𝑗𝑘𝑔(𝑥)∞

𝑎
𝑑𝑥 ≅ −

1

𝑗𝑘

𝑓(𝑎)

𝑔′(𝑎)
𝑒−𝑗𝑘𝑔(𝑎)                (16) 

Equation (16) is the result of the Edge Point Method. Applying this 

result to Equation (8), we write the amplitude function; 

𝑓(𝑥) =
1

𝑅
                                                                                                   (17) 

and the phase function 

𝑔(𝑥′) = 𝑥′𝑐𝑜𝑠𝜑0 − 𝑅                                                                   (18) 

The derivative of the phase function is written as;  
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𝑑𝑔

𝑑𝑥′
= 𝑔′(𝑥′) = 𝑐𝑜𝑠𝜑0 −

𝜕𝑅

𝜕𝑥′
                                                  (19) 

𝑔′(𝑥′) = 𝑐𝑜𝑠𝜑0 −
|𝑥−𝑥′|

𝑅
                                                  (20) 

where; 

|𝑥−𝑥′|

𝑅
= 𝑐𝑜𝑠𝛼                                                                                    (21) 

Substituting Equation (21) into Equation (20) we get, 

𝑔′(𝑥′) = 𝑐𝑜𝑠𝜑0 − 𝑐𝑜𝑠𝛼                                                  (22) 

The diffraction integral becomes, 

𝑢𝑑(𝑃) =
1

𝑗𝑘

𝑗𝑘 𝑠𝑖𝑛 𝜑0

2𝜋
∫

𝑠𝑖𝑛 𝜑0

𝑐𝑜𝑠𝜑0−𝑐𝑜𝑠𝛼𝑒

∞

−∞

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧′                (23) 

where 𝑐𝑜𝑠 𝛼 at the edge point is  

𝑐𝑜𝑠 𝛼𝑒 = −
𝑥

𝑅𝑒
                                                                                    (24) 

and 𝑅𝑒 is the value of R at the edge point as shown in Figure 2. 

 
Fig. 2. The geometry of edge diffraction.  

As a result, we obtain the diffraction integral for a soft surface as 

𝑢𝑑(𝑃) = −
1

2𝜋
∫

𝑠𝑖𝑛 𝜑0

𝑐𝑜𝑠 𝜑0−𝑐𝑜𝑠𝛼𝑒

∞

−∞

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧′                (25) 

Finally, the integral in Equation (25) can be approximated to; 

𝑢𝑑(𝑃) = −
1

2𝜋

𝑠𝑖𝑛 𝜑0

𝑐𝑜𝑠𝜑0−𝑐𝑜𝑠𝛼𝑒
𝐻0

2(𝑘𝜌)                                 (26) 

where 𝐻0
2(𝑘𝜌) is the zeroth order of the second kind Hankel function 

which is expressed as; 

𝐻0
2(𝑘𝑅𝑒) ≅ √

2

𝜋
𝑒

𝑗𝜋

4
𝑒𝑗𝑘𝜌

√𝑘𝜌
                                                                   (27) 

where, 𝑅𝑒 = 𝜌 from Figure 2.  

Now, we will consider the Kirchhoff diffraction integral for a hard 

surface where the derivative of the total field on the surface is zero. 

Taking 𝛻𝑢 = 0 in Equation (1) written;  

𝑢(𝑃) = −
1

4𝜋
∬𝑢 𝛻𝐺. �⃗�  𝑑𝑆′                (28) 

By writing; 

𝜕𝐺

𝜕𝑛
=

𝜕𝐺

𝜕𝑅

𝜕𝑅

𝜕𝑛
                                                                                    (29) 

Optained below Equation;  

𝜕𝐺

𝜕𝑛
= −(𝑗𝑘 +

1

𝑅
)

𝑒−𝑗𝑘𝑅

𝑅

𝜕𝑅

𝜕𝑛
                                                  (30) 

Ignoring 
1

𝑅
 in Equation (30); 

𝜕𝐺

𝜕𝑛
≅ −𝑗𝑘

𝑒−𝑗𝑘𝑅

𝑅

𝜕𝑅

𝜕𝑛
                                                                   (31) 

Equation (28) is rewritten as below; 

𝑢(𝑃) =
𝑗𝑘

4𝜋
∬𝑢

𝑒−𝑗𝑘𝑅

𝑅

𝜕𝑅

𝜕𝑛
𝑑𝑆′               (32) 

where;   

𝑅 = √(𝑥 − 𝑥′)2 + 𝑦2 + (𝑧 − 𝑧′)2                                 (33) 

𝜕𝑅

𝜕𝑛
=

𝑦

𝑅
= 𝑠𝑖𝑛𝛼                                                                                    (34) 

where 𝑛 = 𝑦; 

𝑢(𝑃) = 2
𝑗𝑘

4𝜋
∫ ∫ 𝑒𝑗𝑘𝑥′ 𝑐𝑜𝑠 𝜑0 𝑠𝑖𝑛 𝛼

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑧′𝑑𝑥′

∞

𝑧′=−∞

∞

𝑥′=0
              (35) 

As a result, the diffraction integral is concluded as; 

𝐸𝑑 = 𝑢(𝑃) = −
1

2𝜋
∫

𝑠𝑖𝑛 𝛼𝑒

𝑐𝑜𝑠𝜑0−𝑐𝑜𝑠 𝛼𝑒

∞

𝑧′=−∞

𝑒−𝑗𝑘𝑅𝑒

𝑅𝑒
𝑑𝑧′              (36) 

Finally;  

𝐸𝑑 = 𝑢(𝑃) = −
1

2𝜋

𝑠𝑖𝑛 𝛼𝑒

𝑐𝑜𝑠𝜑0−𝑐𝑜𝑠 𝛼𝑒
𝐻0

2(𝑘𝜌)                (37) 

By comparing Equation (26) and Equation (37), we see that only 

𝑠𝑖𝑛 𝜑0 in Equation (26) is replaced by 𝑠𝑖𝑛 𝛼𝑒 in Equation (37). The 

uniform expression of the diffraction expressions obtained in Equation 

(26) and Equation (37) for hard and soft half planes are written as; 

𝐸𝑑−ℎ𝑎𝑟𝑑 =

−2𝑒−
𝑗𝜋

4
𝑠𝑖𝑛 𝛼𝑒

𝑠𝑖𝑛(𝜑0)
[𝑐𝑜𝑠 (

𝜑0+𝜑𝑒

2
) 𝑠𝑖𝑔𝑛(𝑡1) 𝐹[|𝑡1|]𝑒

𝑗𝑘𝜌𝑐𝑜𝑠(𝜑0+𝜑𝑒) +

𝑐𝑜𝑠 (
𝜑0−𝜑𝑒

2
) 𝑠𝑖𝑔𝑛(𝑡2) 𝐹[|𝑡2|]𝑒

𝑗𝑘𝜌𝑐𝑜𝑠(𝜑0−𝜑𝑒)]                (38) 

𝐸𝑑−𝑠𝑜𝑓𝑡 =

−2𝑒−
𝑗𝜋

4 [𝑐𝑜𝑠 (
𝜑0+𝜑𝑒

2
) 𝑠𝑖𝑔𝑛(𝑡1) 𝐹[|𝑡1|] 𝑒

𝑗𝑘𝜌𝑐𝑜𝑠(𝜑0+𝜑𝑒) +

𝑐𝑜𝑠 (
𝜑0−𝜑𝑒

2
) 𝑠𝑖𝑔𝑛(𝑡2) 𝐹[|𝑡2|] 𝑒

𝑗𝑘𝜌𝑐𝑜𝑠(𝜑0−𝜑𝑒)]                 

(39) 

Respectively, where; 

𝑡1 = −√2𝑘𝜌 𝑐𝑜𝑠 (
𝜑0+𝜑𝑒

2
)                                                                   (40) 

𝑡2 = −√2𝑘𝜌 𝑐𝑜𝑠 (
𝜑0−𝜑𝑒

2
)                                                                   (41) 

𝑠𝑖𝑔𝑛(𝑥) is the signum function which is equal to 1 for 𝑥 > 0, and -1 

otherwise. 𝐹[𝑥] is the Fresnel functiondefined by, 

𝐹[𝑥] =
𝑒
𝑗𝜋
4

√𝜋
∫ 𝑒−𝑗𝑡2

𝑑𝑡
∞

𝑥
                                                                   (42) 
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3. NUMERICAL RESULTS  

In this section, examined the behaviour of the diffracted fields 

caused by soft and hard-surface half-planes. The observation 

distance 𝜌 is taken as 6𝜆 where 𝜆 is the wavelength. If it is 

selected greater than 6𝜆 the amplitude decreases, but increases if 

the observation distance is taken less than 6𝜆. The observation 

angle varies in [0 − 2𝜋].  
In Figure 3, diffracted fields for the soft and hard surfaces are 

plotted simultaneously. For the given values, and the angle of the 

incident plane wave is 𝜋/3, it is observed that diffracted field 

intensity for the soft surface is greater than the intensity of the 

hard surface in the intervals of 𝜑 ∈ [−𝜋/3, 𝜋/3] and 𝜑 ∈

[2𝜋/3, 4𝜋/3]. For 𝜑 ∈ [
𝜋

3
, 2𝜋/3] and 𝜑 ∈ [4𝜋/3, 5𝜋/3] 

intensity of the hard surface is greater than the intensity of the soft 

surface. These results show that between the region of the incident 

and reflected waves, i.e. 𝜑 ∈ [
𝜋

3
,

2𝜋

3
] whose general form is 𝜑 ∈

[𝜑0, 𝜋 − 𝜑0], the amplitude of the diffracted waves 

corresponding to the hard surface is greater than that of the soft 

surface. This is true for 𝜑 ∈ [𝜋 + 𝜑0, 2𝜋 − 𝜑0]. In these regions 

relected field is dominant. However, outside these regions, where 

the diffracted field is dominant, the intensity of the waves 

corresponding to the soft surface is greater than that of the hard 

surface. At the critical points, that are 𝜑0, 𝜋 − 𝜑0, 𝜋 +
𝜑0, and 2𝜋 − 𝜑0 they have the same value.  

In Figure 4, diffracted fields for the soft and hard surfaces are 

plotted simultaneously. For the given values, and the angle of the 

incident plane wave is 𝜋/6,  diffracted field intensity for the hard 

surface is greater than that of the hard one in the intervals of 𝜑 ∈

[𝜑0, 𝜋 − 𝜑0] = [
𝜋

6
, 𝜋 −

𝜋

6
] and φ ∈ [π + φ0, 2π − φ0] = [

7π

6
,

11π

6
]. However, in the other regions, the intensity of the soft 

surface is much greater than that of the hard surface due to the 

reasons given in Figure 3. 

 
Fig. 3. Diffracted field intensities for soft and half-hard-surface 

planes. 

 

Some observation values are used to observed difffracted field 

intensity variations fort he hard surface, and the results are given 

in Figure 5. It is observed that as the distance increases, the field 

intensity tends to decrease. 

 

 
Fig. 4. Diffracted field intensities for soft and hard-surface planes. 

 

 
Fig. 5. Diffracted field intensity variations according to 

observation distance for the hard-surface half-plane. 

 

4. CONCLUSION 

In this study, A half-plane is considered placing at 𝑆 =
{(𝑥, 𝑦, 𝑧); 𝑥 ∈ (0,∞), 𝑦 = 0, 𝑧 ∈ (−∞,∞)}. Kirchhoff 

diffraction integral is used for both soft and hard-surface half-

planes. In the case of a soft-surface half-plane, the total field on 

the surface is zero. By considering this fact, only the Green 

function times the gradient of the incoming wave remains in the 

Kirchhoff diffraction integral. This integral is reduced to the one 

obtained in Equation (25) by employing the edge point method. 

Finally, the diffracted field for the soft surface is obtained in 

Equation (26). For the hard-surface half-plane situation, the 

derivative of the total field on the surface is zero. In that case, the 

incident field times the gradient of the Green function remains in 

the Kirchhoff diffraction integral. Solving the surface integral, we 

obtained the diffraction integral given in Equation (36). Obtained 

the diffracted field for the hard surface in Equation (37). 

Diffracted fields obtained in Equation (26) and Equation (37) are 

not uniform. Their uniform versions are given in Equations (37) 

and (38). Observed that the uniform diffracted field expressions 

in Equations (37) and (38) differ from each other in that the 

diffracted field for the soft surface is multiplied by 𝑠𝑖𝑛(𝛼𝑒)/
𝑠𝑖𝑛(𝜑0 ) to obtain the diffracted field for the hard-surface half-

plane. 
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Appendix 

The MATLAB software code, used for the plots of Equations 

(38) and (39), can be given as below; 

l=0.001; 

k=2.*pi./l; 

fi0=pi./6; 

fi=0:0.01:2.*pi; 

rho=6.*l; 

y=rho.*sin(fi); 

alfae=asin(y./rho); 

t1=-sqrt(2.*k.*rho.*cos((fi0+alfae)./2)); 

t2=-sqrt(2.*k.*rho.*cos((fi0-alfae)./2)); 

Ed_soft=-2.*exp(-

j.*pi./4).*[cos((fi0+alfae)./2).*sign(t1).*fres(abs(t1)).*exp(j.*k.*

rho.*cos(fi+fi0))+cos((fi0-

alfae)./2).*sign(t2).*fres(abs(t2)).*exp(j.*k.*rho.*cos(fi-fi0))]; 

Ed_hard=-2.*exp(-

j.*pi./4).*[sin(alfae)./sin(fi0)].*[cos((fi0+alfae)./2).*sign(t1).*fre

s(abs(t1)).*exp(j.*k.*rho.*cos(fi+fi0))+cos((fi0-

alfae)./2).*sign(t2).*fres(abs(t2)).*exp(j.*k.*rho.*cos(fi-fi0))]; 

polar(fi,abs(Ed_hard),'r'); 

hold on; 

polar(fi,abs(Ed_soft),'b'); 

hold on; 

clear; 

The Fresnel function “fres (u)” used in MATLAB code is given 

as below;  

function y=fres(u); 

N=1000; 

sum=0; 

asinir=0; 

usinir=u; 

delta=(usinir-asinir)./N; 

for i=0:N; 

t=asinir+(i.*delta); 

g=exp(-j.*(t.^2)); 

sum=sum+g; 

end 

y=0.5-(exp(j.*pi./4).*sum.*delta./sqrt(pi)); 

 

Nomenclature 

PEC   Perfectly electric conductor  

GTD   Geometrical theory of diffraction  

MTPO    Modified theory of physical optics  

𝐺  Green function 

P  Observation point 

𝑥′  Scattering point 

𝑅  Distance between scattering and observation     

                             points (m) 

𝑅𝑒  𝑅 value for the edge point 

𝑢  Total field (V/m) 

ui  İncident field (V/m) 

�⃗�   Normal vector to the surface 

𝑘  Wave number 

𝑠𝑖𝑔𝑛(𝑥)  Signum function 

𝐹[𝑥]  Fresnel function 

Greek Symbols 

𝜆  Wavelength (m) 

𝛼  Scattering angle (°) 

𝛼𝑒  Scattering angle at the edge point (°) 

𝜑0  Angle of incidence (°) 
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