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1. INTRODUCTION 

Electric motors are one of the most commonly used actuator 

types. They come in a wide variety, including direct current (DC) 

motors, stepper motors, servo motors, and asynchronous 

alternating current (AC) motors. Among these, asynchronous or 

induction alternating current (AC) motors are frequently used in 

industry to drive machines. An important feature of most 

induction motors is the torque-speed curve [1, 2]. 

It is a fact that the selection of a motor for an application is 

influenced by several factors such as power, speed, torque, 

physical size, efficiency, duty cycle, ambient temperature and 

feedback control, braking, desired result, operating environment, 

and specific application parameters [3]. Although the types of 

induction motors vary depending on the application area, they are 

A and B-type motors given in Figure 1, which are the motor types 

frequently used in the machinery manufacturing industry. The 

different torque capacities of standard induction motors are 

labelled as A, B, C and D in the National Electrical Manufacturers 

Association (NEMA) [4]. A-B motor designs are renowned for 

their high efficiencies and minimal slip, making them suitable for 

variable/constant torque applications. Design C motors were 

initially crafted to meet the high starting torque demands. 

However, they have the expense of higher motor losses and 

reduced efficiency compared to design B motors. They can be 

preferred in pumps and compressors. Meanwhile, Design D 

motors find their niche in applications requiring substantial 

starting torque or managing high inertia loads, featuring notable 

characteristics such as high slip and comparatively lower 

efficiencies. They can be used in applications of impact loads. 

Important torque values (e.g. starting, pull-up, breakdown, and 

rated) on the torque–speed curve are shown in Figure 1. The 

motor is chosen by providing that the system will drive the 

mechanism or mechanisms and will operate in the "stable region" 

after the first working zone. The graph showing the starting (start-

up) zone -stable zone-stop zones of a motor-driven system created 

by choosing random values is given in Figure 2. In systems that 

make frequent stops and starts, these stop-start periods must be 

short to prevent the motor from overheating. In the system in 

Figure 2, it is seen that the motor in the stable region fluctuates 

around its average speed shown by the dotted line, in other words, 

there is "speed fluctuation". Depending on the application, it may 

be necessary to add a flywheel to the system to decrease the 

fluctuation and check whether the motor will provide the 

necessary torque to drive this flywheel by taking the allowed 

speed fluctuation coefficient [5, 6]. 

This paper aims to provide a comprehensive overview of AC 

motor selection methodologies and considerations in machine 

design applications. Through a synthesis of academic literature, 

industry standards, and practical insights, this study will elucidate 

the key parameters influencing motor selection and propose a 
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 Asynchronous or induction alternating current (AC) motors are frequently used in 

industry to drive machines. An important feature of most AC motors is the torque-

speed curve. The main purpose of this study is to provide a guide on how to create 

an electromechanical model for a real system and how the selected motor will affect 

the kinematic and kinetic performances. In this study, it is explained how to define 

the speed-torque characteristic and obtain an approximate speed-torque graph using 

the standard catalogue of motor manufacturers and Kloss formulas. Three 

approaches based on Kloss formulas from literature are introduced and one of them 

is selected to be used. A Scotch Yoke mechanism used for packaging purposes is 

chosen as an industrial application. The equation of motion of that mechanism is 

obtained and a numerical solution is shown. The electromechanical system equation 

includes the mechanism dynamic model and the Kloss equations containing the 

catalogue data of the selected motor. At the end of the numerical simulation, the 

dynamic performance of the system is being evaluated. It is investigated that the 

selected motor is enough to drive the mechanism. Additionally, the effect of adding 

a flywheel to the system on the fluctuation of speed is also examined. 
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systematic framework for engineers and designers. By addressing 

the complexities of motor selection, this paper seeks to empower 

practitioners with the knowledge and tools necessary to make 

informed decisions and evaluate the performance of their designs. 

 
Fig. 1. Typical speed-torque curves for designs A, B, C and D, 

classified by speed-torque curves [4].   

 

 
Fig. 2. Working zones of the motor-driven system.  

 

2. DEFINING THE SPEED-TORQUE CHARACTERISTIC 

FROM MOTOR CATALOG   

It is possible to determine the characteristics of the motors from their 

catalogue data [7, 8]. Kloss formulas can also be used to define the speed-

torque characteristic and obtain its graph approximately from the 

standard catalogue information of motor manufacturers [9, 10]. The 

synchronous speed of induction motors  (
sN ) in rev/min; is expressed in 

terms of alternating current frequency ( f ) and number of motor poles 

( p ) as follows: 

120
s

f
N

p
                                                                                                 (1) 

The change in speed of the motor shaft when the motor is 

loaded is called the slip ( S ) and is given in Equation (2). 

s

s

N n
S

N


                                                                                        (2)             

n is the motor shaft speed. The nominal slip value ( nS ) s is 

expressed in Equation (3) using the nominal (rated) speed (
nN ), 

s n

n

s

N N
S

N


                                                                  (3) 

2.1. Torque-Speed Equation 1 (TSE1) 

In the study conducted by Kral et al. [11], it is stated that the 

equation of the torque-speed graph can be found approximately 

as Equation (4), using data that can be obtained from 

manufacturer catalogues: 

2 bd

bd

bd

M
M

SS

S S





                                                                                 (4) 

where 
2

1bd bd bd

n n n

S M M

S M M

 
   

 

                                          (5)  

 

This Kloss equation states the relationship between the 

breakdown (bd) torque and the breakdown slip value and an 

arbitrary load point determined by the torque and the slip. 

 

2.2. Torque-Speed Equation 2 (TSE2) 

In the study conducted by Buksnaitis [12], the critical slip 

equation is defined in Equation (6)  to determine the torque speed 

graph with data that can be taken from manufacturer catalogues. 

2
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1 2 1
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n

n n n

cr n

bd
n

n

M M M
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   
      

   


 
  

 

                          (6) 

According to the critical slip value of the rotor, the torque-

speed equations are determined as follows: 

 

If 0 crS S   

1

1

2 bdM
M

k S

S k









                                                                                   (7) 

where  

log / log( / )cr nb S S  ,
2

1bd bd

n n

M M
b

M M

 
   

 

,
1 nk bS       (8)   

 If 1crS S     
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2

2
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                                                                                 (9) 

where  

2log / log crk S  ,

2

2 1bd bd

st st

M M
k

M M

 
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 
                            (10) 

 

2.3 Torque-Speed Equation 3 (TSE3) 

In the study conducted by Aree [13], the approximate torque-

speed equation is expressed as Equation (11).  
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                                                               (11) 
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It is possible to show the torque speed characteristics of a 

randomly selected motor catalogue information by using the 

above-mentioned approaches. The motor in the seventh row of the 

catalogue [14] given in Figure 3 can be selected. Afterwards, it is 

possible to make a comparison. The power of the selected motor 

is 2.2 kW, the nominal speed (
nN ) is 1450 rpm, the nominal 

torque ( )nM  is 14.5 Nm, the ratio of starting torque to nominal 

torque ( /st nM M ) is 2.8, and the ratio of breakdown torque to 

nominal torque ( /bd nM M ) is 3.6. The curves of the torque-speed 

equations (TSE1, TSE2, and TSE3) are given in Figure 4. Please 

note that the rated torque at full load speed (n=1450 rpm) is the 

same in all torque-speed graphs. 

As can be seen from the graph of the torque-speed Equation 1 

mentioned in section 2.1, it is clear that the starting torque value 

is quite small compared to the others. The parts of all torque-speed 

graphs after the breakdown torques are approximately similar to 

each other. The take-off time will require longer than expected 

due to the low starting torque. Therefore, one of the torque-speed 

Equations (2-3) mentioned in sections 2.1 and 2.2 can be used. 

The torque equation given in section 2.2 will be used in this study. 

 

 
Fig. 3. A motor catalog from ELK motor [14]. 
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Fig. 4. Curves of torque speed equations. 

 

3. DYNAMIC MODEL OF A SCOTCH-YOKE MECHANISM 

The equations of motion for dynamical systems can be stated 

as the Lagrange equation [15] as depicted in Equation (13).  

 

1, 2, ...,i

i i

d L L
Q i n

dt q q

  
   

  
                                    (13) 

 

where L is the Lagrangian. n is the number of generalized 

coordinates selected, q is the generalized coordinates, and Q is the 

generalized force/torque acting on the ith generalized coordinate. 

It is given in Equation (14). 

 

1

. 1, 2,....,
N

k

i k

k i

r
Q F k N

q


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
                                         (14) 

 

where r is the coordinate that defines the position of the system 

forces and/or torques. F is the external force or moment on the 

axis applied to the application point indicated by r. Generalized 

forces/moments consist of all forces/moments outside the system. 

These external forces/moments can be arbitrary functions of 

generalized coordinates and time. Physically, there can be 

forces/moments that involve the addition of energy into the 

system, such as actuation forces/moments, and/or energy 

dissipation from the system, such as velocity-dependent damping 

forces/moments of viscous dampers and/or forces/moments that 

depend on position, velocity, and acceleration due to Coulomb 

friction. 

By definition, the Lagrangian of the system is: 
 

L K P                                                                      (15) 
 

where K is the total kinetic energy and P is the total potential 

energy of the system. The Lagrange equation describes the 

dynamics of the relevant coordinate only. Therefore, for a system 

with n degrees of freedom, n equations are derived that describe 

the dynamics of the entire system simultaneously. 

The equation of motion of a Scotch Yoke mechanism of a 

packaging machine is given below. The configuration of the 

mechanism is shown in Figure 5(a). The centre of mass of the 2nd 

link, the 3rd link and the 4th link are at A, B and C respectively. It 

is assumed that the gaps between link 2 and link 3 are negligibly 

small. The mechanism works in the horizontal plane. F14 force 

acts on link four as a function of θ, as seen in Figure 5(b). It is 

also assumed that the friction and damping forces are negligibly 

small. The inertial and dimensional properties of the mechanism;

2 2m kg , 
3 4m kg , 

4 6m kg , 2
2 0.02CGI kgm , 

2 350AB a mm  , AD x , DB y , 
4 450DH a mm  .  

 
(a) 

 
(b) 

Fig. 5. (a) A Scotch Yoke mechanism, (b) idealized force acting 

on link 4. 

 

The degree of freedom of the Scotch yoke mechanism is one. 

A single generalized coordinate is sufficient to define the equation 

of motion of it. The variables in this mechanism;   in the position 

of link 2, x and y the position of link 3, and 4x a the position of 

link 4. q   are chosen for the generalized coordinate. Now the 

Lagrangian expression must be written as a function of  and/or

 . 

The sum of the kinetic energies of the moving links; 

 

 2 2 2 2
2 3 4 2 3 4

1 1 1

2 2 2
CGK K K K I m x y m x                 (16) 

 

A loop closure equation is in Equation (17).  

 

AB AD DB                                                                         (17) 

 

The x-axis and y-axis components of this vector equation are 

written respectively. 

 

2 cosx a   and 2 siny a                                                (18) 
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The velocity equations can be found by taking the time 

derivatives of Equation (18). 

 

2 sinx a    and   
2 cosy a                                           (19)  

 

 Equation (19) is substituted into Equation (16) and 

rearranged, 

 

 2 2 2 2
2 3 2 4 2

1
sin

2
K I m a m a                                               (20) 

                                                                                                        

The x-axis can be taken as the reference axis for potential 

energy.  

 

3 2 sinP mgh mgy m ga                                                    (21) 

 

Lagrangian expression, 

 

 2 2 2 2
2 3 2 4 2 3 2

1
sin sin

2
L K P K I m a m a m ga              (22) 

                                                                                            

The partial derivative of Equation (22) concerning the 

generalized velocity for the first term of the Lagrange equation, 

 

 2 2 2
2 3 2 4 2 sin

L
I m a m a  



 
   
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                                       (23) 

 

and then its derivative concerning time. 

 

 2 2 2 2 2
2 3 2 4 2 4 2sin 2 sin cos

d L
I m a m a m a

dt
   



 
    

 
  (24)                                                                                                

 

The partial derivative of Equation (22) for the second term of 

the Lagrange equation concerning the generalized coordinate. 

 

2 2
3 2 4 2cos sin cos

L
m ga m a  




  


                                 (25) 

 

The mathematical expression of the force
14F  given in Figure 

5(b) can be written as Equation (26). 

 

 14

0
0

500
2

F
 

 
  



 
  

  
  

 

                                           (26) 

 

Equation (14) can be specialized as follows for the effect of 

14F acting on link 4 and   acting on link 2 on the generalized axis. 

14

HrQ F




 

 
   

 
                                                            (27) 

The elements of Equation (27) can be expressed in vectorial 

form as below, 

 

14 14F F i   

 2 cosHr xi a DC CH i      

k   

k                                                                                    (28) 

 

The vectors in Equation (28) are substituted into Equation  

(27).   

 

       14 2 14 2sin 1 sinQ F i a i k k F a                    (29) 

 

Equations (24, 25, 29) are substituted into Equation (13), and 

a dynamic equation is obtained. It is given in Equation (30).  

 

   2 2 2 2 2
2 3 2 4 2 4 2

3 2 14 2

sin sin cos

cos sin

I m a m a m a

m ga F a
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  

   

 
               (30) 

 

It can be written more compactly; 

 

     2 , ,eqv eqv eqvJ C Q t                                              (31) 

 

where; 

  2 2 2
2 3 2 4 2 sineqvJ I m a m a     

  2
4 2 sin coseqvC m a    

  14 2 3 2, , sin coseqvQ t F a m ga                                  (32) 

 

Here, eqvJ  is the equivalent mass/mass moment of inertia 

reduced to the actuator (actuator, driver or motor) axis, eqvC  is the 

equivalent terms of Coriolis and/or centripetal, eqvQ  is the 

equivalent force/torque showing the spring, damping, actuator 

and external force/torque.  

 

4. NUMERICAL SOLUTION OF EQUATION OF MOTION 

INCLUDING ACTUATION 

Machine designers should observe the dynamic behaviour of 

the mechanisms before incorporating them into their designs. 

They must also ensure that the kinematics and kinetics of the 

mechanisms are in working order. Numerical simulation of 

equations of motion must be performed to obtain dynamic 

behaviours. Many numerical integration methods are used for the 

approximate solution of equations of motion. The fourth-order 

Runge Kutta method is used as an integration technique in this 

section. State-space approach is carried out for the solution. 

The mechanism given in Figure 5 (a) is used in the packaging 

machine. Let us assume that 300 packages per minute are 

expected from this machine. Then it is expected to rotate at a 

speed of approximately 300 rpm. The graph of external force is 

given in Figure 5(b). A gear reducer and motor will be used to 

drive the mechanism at the desired speed, and let the moment of 

inertia of the reducer and the motor reduced to the crankshaft be 

R MI    1.5 kg-m2. The friction and damping forces are not taken 
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into account in the analysis. The equation of motion of the 

mechanism is given in Equation (31). The mass moment of inertia 

of the reducer and motor is added to
eqvJ .  

 

  2 2 2
2 3 2 4 2 sineqv R MJ I I m a m a                                     (33) 

 

The synchronous speed of a 4-pole induction motor is 1500 

rpm from Equation (1). However, 300 rpm is desired, so a gear 

reducer is necessary to reduce the speed by 1/5. It is possible to 

calculate the work done by the mechanism against only the force 

F. It can be found in the area under the force-displacement graph. 

In this case, since the linear displacement during the return from 

  to 2  will be twice the length of the 2nd link (stroke length = 

2r), the work/energy in one revolution will be as follows, 

 

 
1 1

500 2 500*2*0.35 175
2 2

NmWork r
rev

                     (34) 

 

The average torque value in a cycle is: 

 

175
*2 27.85

2 2
ave ave

Work
Torque M M Nm

 
              (35) 

 

The approximate average speed of the crank of the mechanism 

is as in Equation (36). 

1 min 1 1
 * * 1500* *

60 5 60

5 31.4 

ave Synchronous Speed Reducer
s

rev rad

s s

   



   (36) 

Then, the average power requirement to only the external 

force is as in Equation (37).  

 

* 175*5 875oPower Work W                                       (37) 

 

4.1. Approximate Determination of Speed Fluctuation Coefficient 

Assuming that the crank will rotate at average speed ( 0  ), 

Equation (31) is arranged as follows to find the reduced torque on the 

crankshaft: 

 
2

4 2 3 2 14 2sin cos cos sinmot m a m ga F a                         (38) 

 

The average moment value was previously found in Equation 

(35). It will be possible to approximately determine the energy 

fluctuation or speed fluctuation graphically. The graphical 

representation of these moments for a cycle is given in Figure 6. 

 
Table 1. Allowed speed fluctuation coefficients in different systems. 

System Allowed ks 

Pumps, Cutting machines 1/5 – 1/30  

Machine Tools, Textile Machinery 1/40 – 1/50  

Generators 1/100 – 1/300 

Automobiles 1/200 – 1/300 

Aircraft engines 1/1000 – 1/2000 

 
Fig. 6. Torque graph and average torque. 

 

It is possible to easily calculate the energy levels at points A, 

B, C, D, E and F, where the motor torque intersects the average 

torque. These are given in Equations (39-43). 

 

  , AEnergy at A E  

  ,

0.2186B A

Energy at B

E E 
                                                                                    (39) 

  ,

212.779 0.2186 212.779 212.56C B A A

Energy at C

E E E E      
    (40)  

  ,

301.8454 212.56 301.8454 89.2854D C A A

Energy at D

E E E E      
     (41) 

  ,

246.091 89.2854 246.091 156.8056E D A A

Energy at E

E E E E      
   (42) 

  ,

156.8056F E A

Energy at F

E E E  
                                                                    (43) 

 

While the energy level at point C is minimum, the energy level at D 

is maximum. Then the maximum energy fluctuation is: 

 

   89.2854 212.56 301.8454A AE E E Nm                    (44) 

 

We can determine the approximate speed fluctuation coefficient by 

using the reduced equivalent mass moment of inertia of the crankshaft 

given in Equation (33).   

        It 2sin 0   is assumed, 

 

   

2 2 2
2 3 2

22

301.8454
0.155

0.02 1.5 4*0.35 * 10

s

eqv ave R M ave

E E
k

J I I m a 





 
 

 

 
 

                                     (45) 

It is important to emphasize once again that the value found here is 

approximate. It can be said that this value is quite high even for a 

packaging machine. In this case, it is necessary to use a flywheel for the 

system. Table 1 shows different systems and allowed speed fluctuation 

coefficients [16].  
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4.2. Approximate Determination of Speed Fluctuation Coefficient with 

Numerical Solution 

In this section, a numerical analysis including motor parameters is 

carried out. Let's choose a motor located in the seventh row of the motor 

catalogue given in Figure 3. The power of the selected motor is 2.2 kW, 

the nominal speed (
nN ) is 1450 rpm, the nominal torque ( nM ) is 14.5 

Nm, the ratio of starting torque to nominal torque ( /st nM M ) is 2.8, and 

the ratio of breakdown torque to nominal torque ( /bd nM M ) is 3.6. 

While solving the differential equations, the time interval is chosen as 

0.001 s. and the starting position and speed are chosen as zero. The 

dynamic behaviour of the system is given in Figure 7. Qbasic 

programming language has been used in the numerical simulations. 
  

 
Fig. 7. Numerical solution of Scotch Yoke mechanism. 

 

As shown in Figure 7, the result of the simulation shows that the 

crank speed range is 29.629 / 35.484 /rad s rad s  . In this case, 

the speed fluctuation coefficient is: 

max min 35.484 29.629
0.18647

31.4
s

ave

k
 



 
                               (46) 

As mentioned above, this value is well above acceptable values. The 

time to reach the stable region is 0.354 s. If we assume that the speed 

fluctuation coefficient allowed for this system is 1/ 50,sk  then the 

mass moment of inertia of the flywheel that should be used is 

approximately found as follows: 

   
2

22

301.8454
15.3

0.02 * 10
v

s ave

E
I kgm

k  


                                        (47) 

Due to assumptions, it is better to select a bigger inertia value than 

found in Equation (47). The mass moment of inertia of the flywheel is 

added to the equivalent mass moment of inertia expression given in 

Equation (33). The numerical simulation is run with this modification, 

and the result is given in Figure 8. 

    As shown in Figure 8, the result of the simulation shows that the crank 

speed range is 30.665 / 31.452 /rad s rad s  . In this case, the 

speed fluctuation coefficient is: 

max min 31.452 30.665
0.02506

31.4
s

ave

k
 



 
                               (48) 

 
Fig. 8. Numerical solution of Scotch Yoke mechanism with flywheel. 

 

The time to reach the stable region is approximately 3 seconds. It is 

understood that when adding a flywheel to the system, the desired speed 

fluctuation value is approached, but the time to reach the stable region 

increases. 

If the time it takes for this motor to reach the stable region is not 

satisfactory and a lower value is desired, a more powerful/bigger motor 

should be selected. Let's choose the motor located in the ninth row of the 

motor catalogue given in Figure 3. The power of the selected motor is 4 

kW, the nominal speed (
nN ) is 1460 rpm, the nominal torque ( nM ) is 

26.2 Nm, the ratio of starting torque to nominal torque ( /st nM M ) is 2.8, 

and the ratio of breakdown torque to nominal torque ( / )bd nM M is 3.8. 

When the motor data is entered as input to the model and the solution is 

re-done, the system behaviour is presented in Figure 9. 
 

 
Fig. 9. Numerical solution of Scotch Yoke mechanism with flywheel 

and a bigger motor. 

 

As shown in Figure 9, the result of the simulation shows that the 

crank speed range is 30.912 / 31.706 /rad s rad s  . In this case, 

the speed fluctuation coefficient is: 

max min 31.706 30.912
0.0253

31.4
s

ave

k
 



 
                                 (49) 

The time to reach the stable region is 1.5 seconds. While there is a 

significant improvement in time to reach the stable region, there is no 

significant change in the speed fluctuation coefficient. 

In this study, smaller capacity motors shown in Figure 3 were also 

run in numerical simulations. However, the times for 1.1 kW and 1.5 kW 

capacity motors to reach the stable region were approximately 7 seconds 

and 4.5 seconds, respectively. It was also observed that they could not 

fully reach the average speed values. That is why a 2.2 kW motor was 

chosen first in the study. 
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5. CONCLUSIONS 

In this study, analyses are presented on the selection of asynchronous 

AC motors that are frequently used in industry. If a precise analysis is 

required, it is necessary to know the torque values of the motor 

corresponding to all speeds. The authors can easily state that it is not very 

easy to access these graphics directly from motor catalogues. Kloss 

formulas, detailed in the study and obtained with different approaches, 

enable these graphs to be obtained. 

As it is known, motors are the providers of movement that drive 

mechanisms and therefore machines. For this reason, a Scotch yoke 

mechanism, which is frequently used in industry, is given. The equation 

of motion of this mechanism was obtained by the Lagrange technique. A 

selected Kloss equation was included in the mathematical model 

prepared for numerical analysis. Therefore, the values in the motor 

catalogue can be entered into the model as input. The electromechanical 

system equation of motion which is a second-order ordinary differential 

equation includes the mechanism dynamic model and the Kloss 

equations containing the catalogue data of the selected motor. After that, 

some interpretations were made of the simulation results. By examining 

the speed values in the system response and calculating the speed 

fluctuation coefficient, it became necessary to add a flywheel to the 

system. In the simulation results obtained as a result of this addition, 

interpretations were made regarding the transition time to the stable 

region. If this period was desired to be shorter, a bigger motor from the 

same catalogue was preferred and the results were examined. As 

expected, it was observed that the selected bigger capacity motor reduced 

the time to reach the stable region, but did not cause a noticeable change 

in the value of the speed fluctuation coefficient. 

This study was formed by the authors to address a deficiency seen in 

the literature. This study can be considered as a guide. Using motor 

catalogue values directly makes the study practical. In other words, it is 

a study in which both mechanical and driving systems come together and 

the steps to be followed are explained in order. If the design procedure 

can be applied properly as mentioned in the study, reliable results can be 

obtained through simulation studies before establishing an experimental 

setup. This guide can be easily adapted to any other application. What 

needs to be changed are the type of mechanism and the external force to 

be applied. It is thought that it will contribute to the studies of researchers 

interested in this subject. 
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